Click to enlarge; composite of web photo with painting by Gert van Dijk |
The Drake equation, discussed recently on this blog, provides an estimate of how many communicating civilisations there are in our galaxy. It does so by multiplying a series of factors; none of these is rock solid, so some say it is basically guesswork. That is true, but in the absence of hard facts an educated guess is the best evidence there is. The nice thing about the Drake equation is that it in essence falsifiable, meaning that it is, at least in theory, possible to say whether there are such civilizations or not. In theory, that is, because one of the two possibilities is that are no such civilizations, and it is usually much harder to prove the absence of something than its presence. If someone in another solar system one day decides to answer our interstellar call, for instance to ask mankind to please turn the volume down, or to stop pestering them with unwanted phone calls in the middle of dinner, then we will know for certain that there is someone out there. But at present we have not received any signal, which tell us precisely nothing. It is like fishing: as long as you haven't caught any fish, you cannot conclude there aren't any. Only when you've caught one can you say that there are fish (or, more precisely, that there was at least one fish; you may just have exterminated the species).
Habitable zones (from https://www.saraseager.com/) |
Sara Seager, an astronomer at MIT, proposed a different approach. If you Google her you will find many entries, among them her own website. Her reasoning rests something much more basic then intelligent being using radio signals: is there a biosphere? Her idea starts with the concept that life requires liquid water, an concept that certainly holds water (sorry for that one). Liquid water requires a planet in the habitable zone at the right distance from its star. What I learned from an overview of the conditions under which you might get liquid water is that there might even be liquid water on runaway planets that are no longer circling a star. Anyway, take a planet, add life, stir and wait, and you might get a biosphere. It is wise to search for stars with a nice quiet long term behaviour, so the stars do not cook their planets halfway down the line. Lifeforms have metabolisms, and spew out interesting gases that provide a 'biosignature' in the atmosphere around an alien planet.
Life on Earth certainly altered the atmosphere. At one point there was a nice community of anaerobic organisms quietly doing their thing, and then some new-fangled intruders called 'plants' starting using a highly polluting process called photosynthesis, with a highly reactive dangerous poison as a by-product: oxygen. Plants may have caused the very first mass extinction. Later on, animals learned to control how to burn stuff slowly with that oxygen, making a dent in the amount of oxygen, but not a large one, so Earth's atmosphere now still consists of 20% oxygen. And that can be measured from afar.
Click to enlarge; principle of spectroscopy on transit signal |
Here is the Seager Equation:
N = N* FQ FHZ FO FL FS
* N is the number of planets with detectable biosignature gases
* N* is the number of stars within the sample
* FQ is the fraction of quiet stars
* FHZ is the fraction with rocky planets in the habitable zone
* FO is the fraction of observable systems
* FL is the fraction with life
* FS is the fraction with detectable spectroscopic signatures
If you study the parameters, you will see that several factors have to do with the 'detectability' of a biosphere. That holds for the fractions that concern 'quiet stars', 'observable systems' and detectable 'spectroscopic signatures'. Those fractions decrease the total number appreciably.
Click to enlarge; from: https://informationisbeautiful.net/visualizations/the-drake-equation/ |
Does it matter for speculative biology? Well, you could say that speculative biology has to start with astronomy, so yes. In the last of these 'equation' posts, a forthcoming post on the 'Nastrazurro Equation', I will try to apply all this astronomical reasoning to speculative biology in another way. Soon. Probably.