Tuesday, 19 November 2024

Feet are frustrating! (Feet I)

A long time ago, I promised I would write about feet or toes, but it took ages to find my footing (sorry). Why? Well, animal feet proved to be very complex. My first associations included shock absorption, weight distribution, pivoting, friction, toes or no toes, walking upside down on the ceiling, walking on water, feet as attack weapons or digging instruments, etc. All that did not immediately suggest one simple theme. Moreover, this blog is about speculative biology, but as Wikipedia has no entry 'Feet across the universe', I found myself in uncharted territory, once more. Other speculative biology projects do not help much either: there is the usual tendency to copy Earth's vertebrate or arthropod legs. I think I will have to write more than one post on foot design' because the subject is too large. I must warn you that the result may be quite speculative.

I thought to start with foot anatomy of various Earth animals, reasoning that a comparison of independently evolved foot designs should help detect universal foot design elements, if there are any. The first rule I thought of (I was making up these rules as I went along) was to limit the discussion to walking on land, so I would not have study specialisations for walking on ceilings or climbing vertical walls. I will disregard microscopic and very small animals and will not discuss walking with tentacles (it's been done; start here and search the blog for tentacles). Wikipedia says that eleven animal phyla invaded the land, but omitting legless animals and overly small groups left only vertebrates and arthropods.

To start with vertebrates, various fish lineages crawl onto land, but as they haven't become completely terrestrial, they did not count. Tetrapod vertebrates are monophyletic as far as I can tell, so they all count as having one basic foot design anyway.

As for arthropods, at least six groups seem to have left the water on their own: arachnids, insects, myriapods, woodlice, some sandhoppers and crabs. However, if some or all of these had a common aquatic ancestor with fully formed legs, shouldn't they count as one design? Then again, these animal groups had a very long time to evolve different feet, so perhaps they should all count? In the end, I selected arachnid, insect and crab legs to add to vertebrate legs, giving me four largely independent foot designs to talk about. I had a look at robot feet too as a possible source of designs.  

Scheme of tetrapod limbs. The point is that the hand or foot ('autopod') consists of a number of parallel radiating elemets: fingers or toes. From Young et al 


Tetrapod feet
The basic tetrapod foot or hand has five radiating toes. Early tetrapods may have had more toes, which  did not necessarily all have to radiate from the same spot. Instead, they may have radiated sequentially, meaning one toe at a time branched off if you moved along the leg in the direction of its end. (see here how that 'Devonian pattern' shaped the feet of Furahan Scalates/Hexapods). During evolution, some toes became completely separated, such as those of predatory dinosaurs and birds, while others are encased in a common hull, such as those of elephants and sauropods. Some animals developed additional pseudotoes (panda's and elephants), while horses reduced the toes to just one. In many walking tetrapods the toes all point forwards and make a front-to-back excursion while walking, but I am not yet certain whether that should be a Foot Law or not, so a future post will ask whether backward-pointing toes or sideways toes impair walking. In any case, tetrapod feet consist of multiple segments: in human hands, for instance, fingers start with metacarpal bones in the middle of your hand leading to the three phalanges in your fingers (two in thumbs).  

Obviously, tetrapods are generally large than the other animals to be discussed, and that means that physical circumstances make their world quite different from that of insects and spiders. That definitely affects foot anatomy, and perhaps that merits another post.  

 

Typical spider leg. From: Nentwig et al. All you need to know about spiders. Springer 2022 

        
Arachnid feet
Spider (and scorpion) feet consist of a long leg segment, the tarsus, but only the end touches the ground. The end carries impressive claws and hair tufts. Why? Well, gravity presses the feet of large animals securely against the ground, but animals of insect and spider size need to deal with other forces too, such as wind: a breeze may blow them over, which is why they have splayed legs and why their legs need to hold whatever it is they walk on (the 'substrate'). That is why there are hairs, suction pads and claws to get that grip. 

 

Spider feet showing haiors and claws. From: Labarque et al

Claws are easy to understand as they simply grip the surface with friction, but pads and hairs are not as intuitively understandable: they rely on electrical Van der Waals forces as well as capillary forces to cling to the surface. This gripping has as a consequence that letting go of the surface is not a given, so they may have to peel their legs loose every step. Most spiders have two claws, but some have three, and the third one is apparently used to get a hold on the silk threads of their webs. There's a challenge other foot designs do not have to cope with.   

 

Insect leg from Wikipedia showing the tarsus

Insect feet
The insect tarsus consists of five or more segments at the end of which there is an attachment device that once again bears claws hairs or suction pads to adhere to a surface. The tarsus is segmented in insects, in contrast to that of spiders. The segments can flex, meaning the whole tarsus can curve down if a flexor muscle pulls on a single tendon that runs through the entire chain of segments. When the tendon is released, elastic forces in the exoskeleton straighten the chain again. It cannot curve upward, and the segments also cannot move sideways. 

 

Robotic insect tarsus, From Tran-Ngoc et al

The image above shows a robot foot, copied from an insect foot design. Pulling the tendon in an insect tarsus operates the claws and bends and stiffens the tarsus. This structure reminded me of human fingers that also consist of a chain of segments (phalanges) that flex in one direction only. The similarity stops there, as we use our fingers to curl around objects, whereas insect tarsi do not do that: only the claw/pad/hair assembly at the end does the touching. It is therefore not clear to me why the insect tarsus consists of many segments.   
 

Crab firmly gripping tree bark. From Wikipedia

Crab feet
Crab feet offer a surprise: there aren’t any. Of course, crab legs touch the ground, but the last limb segment, the dactyl, is slightly inwardly curved and ends in a somewhat blunted point. You can call the tarsus a foot, but if so, it is one the claws, pads, sticky hairs of smaller animals, and also without the fingers / toes of large animals. The dactyl itself resembles a claw, which made me think of a reason for the absence of additional clawy or sticky elements. Crabs, evolved in water, had to withstand the  sideways forces of flowing water. One way to avoid being swept away could have been to equip each leg with nice graspers at the end, such as fingers of claws. That would work, but only if the surface had irregularities small enough to hold with one foot's graspers. If the surface elements were larger, they cannot be held with one leg. But another solution would be to treat the entire crab as an eight-fingered hand, with each finger ending in a claw (the dactyl). This larger hand can grip on fairly large objects, provided, first, that the legs/claws clench inwards; second, that there are always few legs clenching the surface from opposite angles; third, that you have enough legs to do that. If I look at the photo of a crab hanging from a tree, I can see it as one large hand. 

A robot crab with such curved dactyls squeezing inwards did a lot better than when the dactyls did not squeeze inwards.  

In this view, instead of saying that crabs have no feet, you can instead regard the entire animal as one big grasping hand or foot.       

The robot Spot from Boston dynamics; the feet are just blobs. 


Robot feet
I guess everyone over the years has seen clips of Boston Dynamics' walking robots. The photo above shows Spot. I have always been surprised that the legs of these robots have only two segments, whereas tetrapods and arthropods have lots more. I guess the engineers felt that two segments were complex enough to start with. The robots also have no wrists or ankles and the 'feet' are just balls, probably made of a substance that provides friction. I suppose that the engineers were avoiding additional complexity. The design shows that you can get away with having no feet; well, robots can. I suspect that having feet is much better than having no feet, and that the difference lies in walking animals having sophisticated nervous systems that can easily control a large number of segments. 

There are many other examples of robot feet, but their makers used animals to base their designs on, so those do not count as aseparate designs. 

Conclusions
The various feet designs allow some rather tentative conclusions. Small animals, of insect size, apparently need feet that provide an active way to adhere to the surface while large animals may simply rely on gravity to press their feet to the ground. That's probably universal Foot Law Number One. Do you remember that my first rule was that I would look a walking only. not climbing or walking upside down? That may have been naïve, as insects seem to use the same mechanisms to stick their legs to horizontal surfaces below as they use for any other surface; in other words, the slope of the surface doesn't really matter for them. It matters for us, as large lumbering creatures hampered by gravity.

Radiating toes are a feature of tetrapods only, and tetrapods are also the only group with really large animals. The two features do not mean that all large animals must have multiple toes. After all, horses have one toe per leg, and so do crabs, in a way. I wouldn't say that multiple toes are necessary. So no Law here.

That leaves the presence of multiple segments placed one behind the other, as occur in insect tarsi and vertebrate feet. Arachnids and robots can do without, so no clear Law here either.

That's it for now. There will be more posts on Feet!      



Sunday, 13 October 2024

The ‘prancing grec’, a secondarily flightless Quadripterate (Tabulae Mortuae VII, Archives XVII)

 I know, I know; a post on this blog was long overdue. But there are mitigating circumstances. About a year ago I started painting completely different subject material in a completely different style. The style in question is the ‘ligne claire’ (‘clear line’), which is the style made popular by the Tintin ‘bandes dessinées’ (comic strips). The subject material in question is the old city centre of Leiden, where I live. Somewhat to my surprise, people liked them so much that I had two small back-to-back expositions. Preparing for an exposition turned out to take time, so I couldn’t also work on The Book or on the blog, or at least not as much as either deserves.

I hasten to add that I did work on the long-postponed blog about animal feet (working title: ‘What are feet for?’). But that isn’t ready yet, so here is a post about one of those old oil paintings that will not make it to The Book. In this case that is not because I no longer like the painting, but because the anatomy of the animals needs such a thorough make-over that it will be easier to start anew.

Click to enlarge; copyright Gert van Dijk

What you see are two animals going through a mating ritual, involving some synchronised stepping (by the way, I never understood why that is called ‘goose-stepping’; geese don’t walk that way, I think). The animals walk bipedally but are of obvious hexapodal stock. The first two pairs of limbs have evolved into wings, which makes the animal ‘quadripterates’. Their silly small wings definitely cannot lift them, so they are secondarily flightless. While their ancestors slowly adapted to a full terrestrial mode of life, there was apparently no new purpose for the wings, so the wings slowly become smaller. You can imagine successive generations, at first impressing one another with their large wings and implied aerial prowess, while later generations kept flapping their ever smaller and ever sillier wings ever faster.

You can tell that these animals are from a very early stage in the Furaha project (meaning the 1980s). Their scientific name is Penancephalon perplexus, suggesting they are not the brightest of beasts. Their single pair of eyes is on stalks, and the animals may well have a single an unpaired vertebral column or analogue rather than a typical ‘scalate’ anatomy. The hind legs are completely mammalian, with an upper leg, lower leg and extended foot all bending in the expected directions. The toes point forwards, which is something I will get back to in the ‘What are feet for?’ post. One question to be answered there is whether toes must always point forward in running terrestrial animals or whether you can also have backwards-pointing toes. We’ll see.

Meanwhile, the animals are going through their choreographed little mating dance. They look back at the viewer as if to say ’Who are you calling ridiculous?’.                 


Tuesday, 27 August 2024

Prober and bobbuck II

Recently, I asked readers which colour scheme they preferred regarding the reworked Prober and Bobbuck (P&B) painting, giving them three choices. The one I chose in the end was the ‘African dawn scheme’, with strong yellow and orange as the main colours. If you see such colours in photographs from Africa, you can be almost certain that the photograph was taken at dusk or dawn against the light. There is always dust in the air in a dry climate, and if you look against the sun, that dust provides the yellow-orange glow. The P&B image tries to catch that feeling, and this is also why the sun is low and we are looking into the light.

Click to enlarge; copyright Gert van Dijk

Anyway, I kept part of the prober’s colours bluish, if only to provide some contrast to the otherwise overly monochromic painting. I read a few recent papers about camouflage patterns to see whether there were new developments (here is a recent textual review without figures as examples). The major theme of that review was that many mechanisms can be combined. The P&B painting shows several mechanisms: background blending, countershading, disruptive colouration and probably a bit of motion dazzle.

Background blending is just what the words suggest, meaning an animal has colours and patterns that make it inconspicuous against the background. Countershading is simply having the underside of the body colour lighter than the top. As the belly of an animal will be shaded by the body, shade makes the light belly colour seem darker, and if all goes well, the result is that the belly is just as dark as the top of the animal. This helps with background blending and makes the animal lose its three-dimensional appearance. Disruptive colouration  means an animal has patches of colour that make the overall shape of the animal more difficult to discern. This works best when the colours of the various patches also appear in the background. Many of these effects work best when an animal is motionless, but apparently some also work when an animal is in motion. In fact, ‘motion dazzle’ describes the effect that the motion of patterned objects is more difficult to judge than that of bland, unpatterned objects.  (tis is not the same as motion camouflage).  

Click to enlarge; copyright Gert van Dijk
 

Back to Furaha and to the P&B painting. The prober and the bobbuck both show multiple camouflage features. Countershading should be obvious in both. Without thinking much about it, I made the belies of both animal an even light colour, whereas I could simply have continued the patterns on the rest of the animal but in lighter colours. Apparently, this occurs in Earth biology a lot too (from where I had unconsciously picked it up). The bobbuck’s horizontal stripes mimick the low hills and patches of low vegetation in the plains where it lives and may also help provide motion dazzle. The stripes are broken, both to break up the outlines of the legs and to increase the resemblance with natural features. The prober has a combination of stripes and spots that again help to break up its outlines. You may note that the stripes are largely at right angles to the animal’s contours. By the way, when stalking and in its initial attack run, the prober holds its ‘raptorial appendages’ (its graspers) back and down, closer to the centre of gravity. Its bright undersides are then not visible from the front. Probers only bring the graspers forwards to the attack position when the hunt is on, when camouflage is no longer an issue.    

Does it all work? You may have noticed that I changed the header of the blog to reflect the updated P&B. Somewhat to my surprise, the shape of the animals is not immediately obvious on such a small picture. That may be because of their fairly unearthly shapes, motion blurring and camouflage. I like it myself, but perhaps I overdid it.          

Was there anything else? Let’s see… Oh yes, both animals of course show features of the Great Hexapod Revolution (here and here), with their kinked distal and proximal necks. You may also note that the functions of the vertical (upper and lower ) jaws are separate from those of the horizontal (left and right) jaws. You will not find advanced hexapods in whom all four legs come together to catch prey; doing so poses overly complex demands on how teeth should work together, so the lateral jaws evolved into food gathering aids. If you look closely, you can see that the prober’s oesophagus runs alongside the proximal and distal necks, and not underneath the joints. You may have to wait for The Book to see that level of detail though.

Speaking of The Book, there is progress. Amazon’s self-publishing scheme makes it difficult to predict colours and shades on the printed page. The only way to get a useful result seems to be to change the colours beforehand, in expectation of then the printers will do with them. Or to them. As this takes trial and error using proofs, I am now at the fourth round of adapting colours, saturation, and brightness, among other things. On screen the results now look garish and cheap, but the proofs are slowly approaching how I wish them to look.       

Sunday, 21 July 2024

Furaha at Erasmuscon 2024 next August

A month from now the yearly European science fiction conference called ‘Eurocon’ will open its doors in Rotterdam, the Netherlands. Each yearly version has its own name, and this one is called ‘Erasmuscon’. Seeing that Rotterdam isn’t far from where I live, I contacted the organisers about a year ago, hoping they might be interested in adding a bit of speculative biology to the conference. After all, speculative biology went down very well at a similar science fiction convention in London (see here and here).

The result is that I am now scheduled to give a 45-minute talk on Furaha. For those interested, the programme can be found on the Erasmuscon site; I will speak right after the opening ceremony on 16 August, 2024.

The organisers asked participants to come up with a video to use in social media. I wish they had asked that a year ago, so I could have had more time, but I managed to cobble something together. I will present it here, and there is a larger version on YouTube as well.

I decided to do a micro-documentary. The organisers had asked for a short clip lasting 30 to 60 seconds, so I aimed for one minute. The end result is a minute and a half though. I decided that the paintings and a few animations should take centre stage, but just showing an unmoving painting seemed boring, so I decided to play with making paintings move.

To do that, I cut up two paintings in layers representing distance from the viewer. The farthest layer showed the sky and an empty landscape. The next layer represented a part of the landscaper closer by, and in that layer all the really far parts had been removed, leaving a transparent emptiness. The next layers contained progressively closer objects. I wrote a quick Matlab programme to put the layers on top of one another again, with layers shifting more to the right the closer the layer is to the viewer. Repeat that to make as many frames as you want, take a snapshot each time, assemble them into a video and you get a view as if the camera is moving through a 3D view. Anyway, that was the idea, and I will leave it to you to judge whether it worked. For other scenes, the ‘camera’ just moved over the painting, zooming in or out as desired.             

I wished to add a voice comment. I had once played with a microphone which was not a success at all: I had to repeat each phrase many times because I made errors, and the few times I didn’t, an airplane flew over or some other noise intruded. This time, I looked at voice generation and decided to use that. You type in a sentence and hear an AI voice speaking those words. It’s amazing this works, given the general lack of correspondence between the sounds of English words and the way they are spelled. Obviously, the AI behaves like humans in this respect: it ‘knows’ what English words sound like irrespective of their spelling. A funny thing is that the AI did not manage to say the word ‘Furaha’ the way a human would pronounce it. Writing it like ‘Fooh raha’ worked a lot better.

So here is the video; I do not know whether the Erasmuscon people will actually use it in their communications, as I just handed it in. Perhaps I will see you in Rotterdam next month!




Thursday, 27 June 2024

Reworking 'Prober and Bobbuck'

The image on the header of this blog still shows an old oil painting depicting a bobbuck being chased by a centauroid carnivore, a prober. Back in 2012 I already mentioned that I was working on a new digital version, one finished at the time. I never replaced the image in the header, thinking that I ought to save all new paintings for The Book. I take that restriction less seriously know and am working on a new 'Prober and Bobbuck' version to account for all the anatomical conversions of the Great Hexapod Revolution. That new one will therefore make the previous one obsolete, even though it was never published. that is a sad fate for any painting, so here it is, at last.

 

Click to enlarge; copyight Gert van Dijk

The original oil painting as well as the now defunct digital one, above, were meant to evoke the atmosphere of a scene from an African wildlife documentary. You will just have to image the voice of the inestimable David Attenborough, providing a running commentary.

But how how far should I take the 'Africa scene' association? Please help me decide.

Click to enlarge; copyright Gert van Dijk

Here is version One. The painting is at an early stage, without any details, and there is also no leg blurring yet (I will first paint the animals and then cautiously apply blurring effects). The light will come from the top left with the sun low in the sky so there will be brightly lit bands while most of the visible parts of the animals show the shade side; those bright bands have already been indicated. The animals are further apart than in the original, not because that improves the lay-out, but to cater for the fold between pages (the 'gutter') when the image is printed as a book). 

The colour of the plain indicates dry grass, at least to an Earth observer. Almost automatically, we assume that the scene represents a hot and dry environment. But for all we know, orange colour indicates freshly sprouted plants in this particular Furahan biotope... 

I played with camouflage patterns taking inspiration from various Earth animals, so there are stripes tending to run at right angles to outlines and large blotches that make contour recognition more difficult (implying that the animals for whom these patterns are meant have visual circuitry relying on colour, contrast and contour extraction much like our visual system). There is also countershading, in which the underside of animals is lighter than their top, so any added shade on the underside will be counteracted. The animal's colour schemes match the surroundings. Nice, but very Earth-like. Too Earth-like?


Click to enlarge; copyright Gert van Dijk

In this second version the colours of the animals do not match the surroundings well, which can be explained, if need be, in a variety of ways: perhaps the animals have strayed into a biotope where their camouflage does not work; perhaps the plants have changed with the seasons but the animals have not; or perhaps the animals cannot see this colour, or cannot discriminate between yellow-ochre and greenish blue. The animals are less Earth-like with these colours.


Click to enlarge; copyright Gert van Dijk

This third version has blue-green vegetation, which is not strange on Furaha. After all, large plants on Furaha consist of three groups with differently coloured photosynthetic pigments. The result is that the animals and plants match one another, albeit in a way not found on Earth (not at present anyway; dinosaurs may have sported colours that mammals cannot produce). An interesting aspect is how strong our preconceptions about what colours mean are. Will people interpret the lighting with a low-set sun, or will they assume a nighttime scene because of the bluish colours? I could turn the brightly lit bands yellow in an attempt to counter that (unless that evokes moonlight!).   

I must decide before I start finishing the painting; which one do you prefer? One, Two or Three? If possible, can you say why?


Sunday, 26 May 2024

Could plants be shaped 'webbed' instead of 'branched' ? (Alien Plants VIII, Tabulae mortuae VI, Archives XVI)

 There are at least three clades of plants with different photosynthetic pigments on Furaha. While having leaves that are not green creates some 'otherworldliness', the shape of these plants is the one we know well: a stem with branches and leaves. At one time, some Furahan plants had enormous sail-like leaves. Unfortunately, reading about wind stresses on plants made me realise why Earth plants do not have sails or giant parasols for leaves. They are poor engineering, as giant leaves would suffer from wind damage (see here for what it takes to get large leaves). With some regret on my part, giant leaves followed ballonts (see here) on their way to the Forbidden Vault.

Even so, I always felt I should do more with plants and will share some ideas here. I find mangrove forests fascinating: plants, standing in salt seawater, form a barrier against waves and create their own ecosystem. Why are they limited to some tropical coats, and why aren't temperate coasts also blanketed with a whole range of different 'mangrovian' ecosystems? If Earth doesn't offer us such a spectacle, could Furaha have vast ribbon-like forests covering its coastlines? That's something I haven't worked out yet; I should probably first understand why this does not happen on Earth. So far, I suspect that the origin of Earth's land plants, stemming from freshwater organisms, has something to do with it, which begs the question how mangroves manage salt water. I will have to study that, but for this post I am more interested in how they withstand waves.                          

Click to enlarge; copyright Gert van Dijk

Click to enlarge; copyright Gert van Dijk

Another plant aspect I once came up with was a desert ecosystem in which the local plants really went out of their way to fend off herbivores. Some plants produced caltrops, also known as crow's foot, among other names. Caltrops are the unpleasant pointy bits of iron strewn on the ground to make life difficult for the enemy's men and horses. In the case of Furahan caltrop plants, the spikes grew upward from the roots of some trees and shrubs.

Click to enlarge; from Wikipedia

Those Furahan root spikes looked -intentionally- like the top left caltrop in the image above, dating from 1505.

Other shrubs had nasty strong and very sharp thorns. Still, some herbivores, like the animal shown lying in the shade in the picture above, developed a string and tough carapax allowing them to move through the nasty shrubbery. The image is from an old oil painting that I later decided did not work  well, so it was delegated to the Forgotten Attic.        

But one plant species isn't on the painting. What if thorns that constantly touched a branch of the same plant would bend around that branch, clasping it firmly? If that would happen on many branches, the result would be a strong structure, one in which branches could not simply be pushed aside. This weblike structure would make life more difficult for herbivores, putting most of the plant outside their reach (well, until they evolved long tongues or the equivalent of pruning shears, of course).   

Click to enlarge; from Wikipedia
       
Another way to reach this webbed structure involves 'inosculation'. That isn't a concept I came up with for fun, but an existing word: here is the Wikipedia page on inosculation. According to Wikipedia, when tree trunks or roots rub against one another, the bark may wear off and the cambium, the live growing tissue of a tree, of the two touching parts may fuse and grow on from there, ultimately producing new bark around the touching area. This explanation centres on damage to the bark exposing the cambium. Grafting, the artificial variant of inosculation, also relies on would healing.    

Tree roots can certainly fuse, but roots do not move much, so I find it hard to believe that root inosculation must start with damage due to rubbing. This suggests that mere touch or pressure without movement seems sufficient to start inosculation. But roots and trunks can also press against stone, and such pressure does not seem to abrade the bark at all. In the end, it is often the stone that moves instead! Do trees recognise that they are touched by another part of themselves, and then allow or even favour inosculation? I found some evidence that some plants, like English ivy and strangler figs, readily from natural stem grafts (in this free paper). You can imagine that a climbing plant might benefit from a web structure. 

Click to enlarge; from Wikipedia
 

A strangler fig needs to be able to stand on its own stems when its victim dies, and firm connections between the stems are then quite beneficial. The image above, from the Wikipedia page on strangler figs, shows this fusion tendency quite clearly (but the page does not mention this).

That paper led to another stating that roots indeed graft naturally (here). One explanation for this tendency was that connected roots provide better anchorage (for other explanations, read the paper).

Well, well. It seems that some Earth plants indeed readily 'inosculate' to obtain a mechanical advantage! That is what I wanted, and as usual every time you think you had an original idea for a Speculative Biology project has already been tried by 'Nonspeculative Biology'...

All this makes me think that Furahan plants could do with more self-inosculation. The resulting cross-struts offer mechanical advantages that might help Furahan mangrovian plants to withstand the force of waves. In deserts, I can see plants preventing access to herbivores too.

-------------------------

For other posts on alien plants, start here or just search the blog for 'alien plants'. And for other posts of defunct paintings, start here. 

-----------------------

This is post #300! I also forgot to mention that the blog passed its 16th birthday in April, and that the 300 posts amassed a total of about 2680 comments. 

Friday, 24 May 2024

Some modest website maintenance

 I haven't changed the main Furaha website in quite some time. The odd thing about old sites is that sometimes animations stop working or images become invisible, even though they did work initially, and nothing changed.

I was asked by someone, who wanted to know more about animal locomotion, about some of these animations. I decided that some attention was long overdue and started work on it. I found that in some cases the case of one letter differed in the html file and the actual file name, so it seemed that html has become less forgiving. I also added -slightly- more modern html code to make the animation work better.

I then recalled that someone else had asked whether the old 'Furaha right now' page would ever be reinstated. That page showed pictures of the planet around its sun Jua and of the distribution of light and dark on the planetary surface, updater roughly every Earth hour. At one point I had to remove that page because at the time I could not store all 900 images for one year on the server, and so had to remember refreshing them every month or so. I have more room now, so I polished the output a bit, ran the Matlab programs again, transferred the 900 images and made a new menu item: 'Furaha right now'.

Click to enlarge; copyright Gert van Dijk

 Here is an example image showing a map with day and night areas, as well as two globes representing the dayside and the nightside of the planet, at one particular time of day and particular point in the planet's orbit.

If you revisit the page often enough, you may find out how humans on the planet devised a calendar to cope with their 551.1 day long year.

However, nothing else has been changed, because I do not have the time: I am working on The Book and a different art project altogether. But I will get to it. At one point.