Click to enlarge; copyright Gert van Dijk |
An early version of the droodle is shown above. And there we are: the droodle has an armour consisting of overlapping plates, and so did trilobites, and so did Roman soldiers. I came across the subject when I was preparing to paint the droodle anew for The Book. Most of my new paintings have very little to do with the old ones, but I like some old designs enough to go over them again, taking the opportunity to improve them in as many ways as I can. I started wondering how animals manage to move while covered with what seem like very stiff plates. How are these plates attached to one another? Obviously, in arthropod legs the exoskeleton of adjacent parts of the leg form joints that often have just one axis of movement, much like our own knees: we can bend it stretch a knee but it does not move sideways nor can we rotate the leg and foot backwards. I started thinking about whether that also applies to the plates covering the droodle.
Click to enlarge; copyright Gert van Dijk |
Above you see the result of simple experiment: I wanted to form successive hoops curving around the animal's back while widening at the sides. I imagined a hinge between two hoops with the axis of rotation about halfway up the animal. Of course, such an axis of rotation would make sideways movement impossible, but so be it. I assumed that the plate in front would slide over the plate in back. I could imagine that in my mind's eye for half-circular hoops, but felt I needed some visual help with hoops that widened at the side: could they in fact slide over one another over their entire length, or would they intersect, making the movement impossible? So I made a rough shape like that in Vue, of which the top surface represents the plate. As you can see, at the centre one hoop can easily slide under the next one while it wants to move over it at the sides. This does depend on the site of the hinge and some other aspects, but it does show that you cannot assume any angle or shape to work. I could of course still paint it the intended way and no-one would be the wiser. But science has preference over art in such matters. So what was wrong?
Click to enlarge; Manton, The Arthropods 1977 |
Click to enlarge; Manton, The Arthropods 1977 |
I then wondered if his is how all armour segments are connected in arthopods, and browsed through the book. As you would expect, there are a myriad adaptations of tergite movement. In species that burrow, successive tergites are kept from sliding over one another and have a built in 'door stop', allowing the animal to push the soil out of its way. In other species there are additional small tergites normally hidden between larger ones. When the body is flexed, the gap that would otherwise appear between the large ones is filled by the small ones. In many cases tergites only cover the back of the beast. There may be other bits of hoops at the belly (sternites) or the sides (pleurites), all of which are connected to one another by the folds of skin.
Click to enlarge; from The Arthopods, SM Manton 1977 |
So I learned from all this that arthropod tergites can in fact be connected by 'hard points', but in many cases the skin folds allow flexibility and freedom of movement. So that was one problem solved, but all this did not answer the question how to ensure that the tergites do not 'intersect' while rotating, as they did in my simple model? Or how do you avoid having large gaps form when the animal moves? There may be several answers to these questions. Perhaps the tergites should be flexible.
( video does not seem to work; I will check later...)
Have a look at the YouTube video above, of a millipede flexing its body in all directions: the tergites do not show any gaps at all, and yet they slide over one another in at least two directions of rotation: they must be flexible. But would that work for a big animal, in which you would expect the tergites to be stiff? (but never brittle: the armour must be capable of withstanding blows, and allowing it to deform it a bit should absorb the energy of a blow).
Another solution would be to forgo tergites that run from one side of the animal to the other; split them up in separate parts instead. These smaller plates could each be tough, and be connected with skin folds. At the top of this post you'll find a simple model I made to see what a droodle designed in this manner might look like. Mind you, this is not what the painting look like: the droodle has already evolved some more and no longer looks like this, but it does still have multiple overlapping tergites.
Click to enlarge; source here |
( video does not seem to work; I will check later...)
The video above shows the Roman lorica in action (the inside is well visible two minutes into the video). The hoops could slide and rotate a bit with this arrangement, in exactly the same way that the tergites of trilobite could slide over one another thanks to being connected by folds of skin. Only the trilobites had their armour some 520 millions of years before the Romans invented their lorica.
So this is how the droodle came by its armour and by its scientific name of 'Lorica segmentata'. There is a long list of items the Romans did for us, to which I would humbly like to add that they can make you think how exoskeletons work. Not a bad thing at all.